#神经网络-【798资源网】编程沉思录简介
神经网络-【798资源网】编程沉思录|____1_01_artificial_neuron.pdf|____1_02_activation_function.pdf|____1_03_capacity_of_single_neuron.pdf|____1_04_multilayer_neural_network.pdf|____1_05_capacity_of_neural_network.pdf|____1_06_biological_inspiration.pdf|____2_01_empirical_risk_minimization.pdf|____2_02_loss_function.pdf|____2_03_output_layer_gradient.pdf|____2_04_hidden_layer_gradient.pdf|____2_05_activation_function_derivative.pdf|____2_06_parameter_gradient.pdf|____2_07_backpropagation.pdf|____2_08_regularization.pdf|____2_09_parameter_initialization.pdf|____2_10_model_selection.pdf|____2_11_optimization.pdf|____3_01_motivation.pdf|____3_02_linear_chain_crf.pdf|____3_03_context_window.pdf|____3_04_computing_partition_function.pdf|____3_05_computing_marginals.pdf|____3_06_performing_classification.pdf|____3_07_factors_sufficient_statistics_linear_crf.pdf|____3_09_factor_graph.pdf|____3_10_belief_propagation.pdf|____4_01_loss_function.pdf|____4_02_unary_log-factor_gradient.pdf|____4_03_pairwise_log-factor_gradient.pdf|____4_04_discriminative_vs_generative.pdf|____4_05_maximum-entropy_markov_model.pdf|____4_06_hidden_markov_model.pdf|____4_07_general_crf.pdf|____4_08_pseudolikelihood.pdf|____5_01_definition.pdf|____5_02_inference.pdf|____5_03_free_energy.pdf|____5_04_contrastive_divergence.pdf|____5_05_contrastive_divergence_parameter_update.pdf|____5_06_persistent_CD.pdf|____5_07_example.pdf|____5_08_extensions.pdf|____6_01_definition.pdf|____6_02_loss_function.pdf|____6_03_example.pdf|____6_04_linear_autoencoder.pdf|____6_05_undercomplete_vs_overcomplete_hidden_layer.pdf|____6_06_denoising_autoencoder.pdf|____6_07_contractive_autoencoder.pdf|____7_01_motivation.pdf|____7_02_difficulty_of_training.pdf|____7_03_unsupervised_pretraining.pdf|____7_04_example.pdf|____7_05_dropout.pdf|____7_06_deep_autoencoder.pdf|____7_07_deep_belief_network.pdf|____7_08_variational_bound.pdf|____7_09_dbn_pretraining.pdf|____8_01_definition.pdf|____8_02_inference_ISTA_algorithm.pdf|____8_03_dictionary_update_projected_gradient_descent.pdf|____8_04_dictionary_update_block-coordinate_descent.pdf|____8_05_dictionary_learning_algorithm.pdf|____8_06_online_dictionary_learning_algorithm.pdf|____8_07_ZCA_preprocessing.pdf|____8_08_feature_extraction.pdf|____8_09_relationship_with_V1.pdf|____9_01.motivation.pdf|____9_02_local_connectivity.pdf|____9_03_parameter_sharing.pdf|____9_04_discrete_convolution.pdf|____9_05_pooling_and_subsampling.pdf|____9_06_convolutional_network.pdf|____9_07_object_recognition.pdf|____9_08_example.pdf|____9_09_data_set_expansion.pdf|____9_10_convolutional_rbm.pdf|____10_01_motivation.pdf|____10_02_preprocessing.pdf|____10_03_one-hot_encoding.pdf|____10_04_word_representations.pdf|____10_05_language_modeling.pdf|____10_06_neural_network_language_model.pdf|____10_07_hierarchical_output_layer.pdf|____10_08_word_tagging.pdf|____10_09_convolutional_network.pdf|____10_10_multitask_learning.pdf|____10_11_recursive_network.pdf|____10_12_merging_representations.pdf|____10_13_tree_inference.pdf|____10_14_recursive_network_training.pdf|____Neuralnetworks[4.2]-TrainingCRFs-unarylog-factorgradient-fU2W7KRoS2U.en.srt|____Neuralnetworks[4.2]-TrainingCRFs-unarylog-factorgradient-fU2W7KRoS2U.mp4|____Neuralnetworks[4.3]-TrainingCRFs-pairwiselog-factorgradient-1W2lkcGV2Zo.en.srt|____Neuralnetworks[4.3]-TrainingCRFs-pairwiselog-factorgradient-1W2lkcGV2Zo.mp4|____Neuralnetworks[4.4]-TrainingCRFs-discriminativevs.generativelearning-MD4mY3Zj5E4.en.srt|____Neuralnetworks[4.4]-TrainingCRFs-discriminativevs.generativelearning-MD4mY3Zj5E4.mp4|____Neuralnetworks[4.5]-TrainingCRFs-maximum-entropyMarkovmodel-aMi2xnYEwbc.en.srt|____Neuralnetworks[4.5]-TrainingCRFs-maximum-entropyMarkovmodel-aMi2xnYEwbc.mp4|____Neuralnetworks[4.6]-TrainingCRFs-hiddenMarkovmodel-jdlJfM707MM.en.srt|____Neuralnetworks[4.6]-TrainingCRFs-hiddenMarkovmodel-jdlJfM707MM.mp4|____Neuralnetworks[4.7]-TrainingCRFs-generalconditionalrandomfield-QY9k7tJistU.en.srt|____Neuralnetworks[4.7]-TrainingCRFs-generalconditionalrandomfield-QY9k7tJistU.mp4|____Neuralnetworks[4.8]-TrainingCRFs-pseudolikelihood-ltRT1m7vaBU.en.srt|____Neuralnetworks[4.8]-TrainingCRFs-pseudolikelihood-ltRT1m7vaBU.mp4|____Neuralnetworks[5.1]-RestrictedBoltzmannmachine-definition-p4Vh_zMw-HQ.en.srt|____Neuralnetworks[5.1]-RestrictedBoltzmannmachine-definition-p4Vh_zMw-HQ.mp4|____Neuralnetworks[5.2]-RestrictedBoltzmannmachine-inference-lekCh_i32iE.en.srt|____Neuralnetworks[5.2]-RestrictedBoltzmannmachine-inference-lekCh_i32iE.mp4|____Neuralnetworks[5.3]-RestrictedBoltzmannmachine-freeenergy-e0Ts_7Y6hZU.en.srt|____Neuralnetworks[5.3]-RestrictedBoltzmannmachine-freeenergy-e0Ts_7Y6hZU.mp4|____Neuralnetworks[5.4]-RestrictedBoltzmannmachine-contrastivedivergence-MD8qXWucJBY.en.srt|____Neuralnetworks[5.4]-RestrictedBoltzmannmachine-contrastivedivergence-MD8qXWucJBY.mp4|____Neuralnetworks[5.5]-RestrictedBoltzmannmachine-contrastivedivergence(parameterupdate)-wMb7cads0go.en.srt|____Neuralnetworks[5.5]-RestrictedBoltzmannmachine-contrastivedivergence(parameterupdate)-wMb7cads0go.mp4|____Neuralnetworks[5.6]-RestrictedBoltzmannmachine-persistentCD-S0kFFiHzR8M.en.srt|____Neuralnetworks[5.6]-RestrictedBoltzmannmachine-persistentCD-S0kFFiHzR8M.mp4|____Neuralnetworks[5.7]-RestrictedBoltzmannmachine-example-n26NdEtma8U.en.srt|____Neuralnetworks[5.7]-RestrictedBoltzmannmachine-example-n26NdEtma8U.mp4|____Neuralnetworks[5.8]-RestrictedBoltzmannmachine-extensions-iPuqoQih9xk.en.srt|____Neuralnetworks[5.8]-RestrictedBoltzmannmachine-extensions-iPuqoQih9xk.mp4|____Neuralnetworks[6.1]-Autoencoder-definition-FzS3tMl4Nsc.en.srt|____Neuralnetworks[6.1]-Autoencoder-definition-FzS3tMl4Nsc.mp4|____Neuralnetworks[6.2]-Autoencoder-lossfunction-xTU79Zs4XKY.en.srt|____Neuralnetworks[6.2]-Autoencoder-lossfunction-xTU79Zs4XKY.mp4|____Neuralnetworks[6.3]-Autoencoder-example-6DO_jVbDP3I.en.srt|____Neuralnetworks[6.3]-Autoencoder-example-6DO_jVbDP3I.mp4|____Neuralnetworks[6.4]-Autoencoder-linearautoencoder-xq-I0Rl8mt0.en.srt|____Neuralnetworks[6.4]-Autoencoder-linearautoencoder-xq-I0Rl8mt0.mp4|____Neuralnetworks[6.5]-Autoencoder-undercompletevs.overcompletehiddenlayer-5rLgoM2Pkso.en.srt|____Neuralnetworks[6.5]-Autoencoder-undercompletevs.overcompletehiddenlayer-5rLgoM2Pkso.mp4|____Neuralnetworks[6.6]-Autoencoder-denoisingautoencoder-t2NQ_c5BFOc.en.srt|____Neuralnetworks[6.6]-Autoencoder-denoisingautoencoder-t2NQ_c5BFOc.mp4|____Neuralnetworks[6.7]-Autoencoder-contractiveautoencoder-79sYlJ8Cvlc.en.srt|____Neuralnetworks[6.7]-Autoencoder-contractiveautoencoder-79sYlJ8Cvlc.mp4|____Neuralnetworks[7.1]-Deeplearning-motivation-vXMpKYRhpmI.en.srt|____Neuralnetworks[7.1]-Deeplearning-motivation-vXMpKYRhpmI.mp4|____Neuralnetworks[7.2]-Deeplearning-difficultyoftraining-YoiUlN_77LU.en.srt|____Neuralnetworks[7.2]-Deeplearning-difficultyoftraining-YoiUlN_77LU.mp4|____Neuralnetworks[7.3]-Deeplearning-unsupervisedpre-training-Oq38pINmddk.en.srt|____Neuralnetworks[7.3]-Deeplearning-unsupervisedpre-training-Oq38pINmddk.mp4|____Neuralnetworks[7.4]-Deeplearning-example-SXnG-lQ7RJo.en.srt|____Neuralnetworks[7.4]-Deeplearning-example-SXnG-lQ7RJo.mp4|____Neuralnetworks[7.5]-Deeplearning-dropout-UcKPdAM8cnI.en.srt|____Neuralnetworks[7.5]-Deeplearning-dropout-UcKPdAM8cnI.mp4|____Neuralnetworks[7.6]-Deeplearning-deepautoencoder-z5ZYm_wJ37c.en.srt|____Neuralnetworks[7.6]-Deeplearning-deepautoencoder-z5ZYm_wJ37c.mp4|____Neuralnetworks[7.7]-Deeplearning-deepbeliefnetwork-vkb6AWYXZ5I.en.srt|____Neuralnetworks[7.7]-Deeplearning-deepbeliefnetwork-vkb6AWYXZ5I.mp4|____Neuralnetworks[7.8]-Deeplearning-variationalbound-pStDscJh2Wo.en.srt|____Neuralnetworks[7.8]-Deeplearning-variationalbound-pStDscJh2Wo.mp4|____Neuralnetworks[7.9]-Deeplearning-DBNpre-training-35MUlYCColk.en.srt|____Neuralnetworks[7.9]-Deeplearning-DBNpre-training-35MUlYCColk.mp4|____Neuralnetworks[8.1]-Sparsecoding-definition-7a0_iEruGoM.en.srt|____Neuralnetworks[8.1]-Sparsecoding-definition-7a0_iEruGoM.mp4|____Neuralnetworks[8.2]-Sparsecoding-inference(ISTAalgorithm)-L6qhzWWtqQs.en.srt|____Neuralnetworks[8.2]-Sparsecoding-inference(ISTAalgorithm)-L6qhzWWtqQs.mp4|____Neuralnetworks[8.3]-Sparsecoding-dictionaryupdatewithprojectedgradientdescent-bhqNSjJ_A20.en.srt|____Neuralnetworks[8.3]-Sparsecoding-dictionaryupdatewithprojectedgradientdescent-bhqNSjJ_A20.mp4|____Neuralnetworks[8.4]-Sparsecoding-dictionaryupdatewithblock-coordinatedescent-UMdNfhgPKTc.en.srt|____Neuralnetworks[8.4]-Sparsecoding-dictionaryupdatewithblock-coordinatedescent-UMdNfhgPKTc.mp4|____Neuralnetworks[8.5]-Sparsecoding-dictionarylearningalgorithm-PzNMff7cYjM.en.srt|____Neuralnetworks[8.5]-Sparsecoding-dictionarylearningalgorithm-PzNMff7cYjM.mp4|____Neuralnetworks[8.6]-Sparsecoding-onlinedictionarylearningalgorithm-IePxTepLvQc.en.srt|____Neuralnetworks[8.6]-Sparsecoding-onlinedictionarylearningalgorithm-IePxTepLvQc.mp4|____Neuralnetworks[8.7]-Sparsecoding-ZCApreprocessing-eUiwhV1QcQ4.en.srt|____Neuralnetworks[8.7]-Sparsecoding-ZCApreprocessing-eUiwhV1QcQ4.mp4|____Neuralnetworks[8.8]-Sparsecoding-featureextraction-FL81zSjAEEg.en.srt|____Neuralnetworks[8.8]-Sparsecoding-featureextraction-FL81zSjAEEg.mp4|____Neuralnetworks[8.9]-relationshipwithV1-MdomgSiL86Q.en.srt|____Neuralnetworks[8.9]-relationshipwithV1-MdomgSiL86Q.mp4|____Neuralnetworks[9.1]-Computervision-motivation-rxKrCa4bg1I.en.srt|____Neuralnetworks[9.1]-Computervision-motivation-rxKrCa4bg1I.mp4|____Neuralnetworks[9.2]-Computervision-localconnectivity-vLf3KVe2Z1k.en.srt|____Neuralnetworks[9.2]-Computervision-localconnectivity-vLf3KVe2Z1k.mp4|____Neuralnetworks[9.3]-Computervision-parametersharing-aAT1t9p7ShM.en.srt|____Neuralnetworks[9.3]-Computervision-parametersharing-aAT1t9p7ShM.mp4|____Neuralnetworks[9.4]-Computervision-discreteconvolution-Y7TMwqAWEdo.en.srt|____Neuralnetworks[9.4]-Computervision-discreteconvolution-Y7TMwqAWEdo.mp4|____Neuralnetworks[9.5]-Computervision-poolingandsubsampling-I-JKxcpbRT4.en.srt|____Neuralnetworks[9.5]-Computervision-poolingandsubsampling-I-JKxcpbRT4.mp4|____Neuralnetworks[9.6]-Computervision-convolutionalnetwork-cDdpwAIsuD8.mp4|____Neuralnetworks[9.7]-Computervision-objectrecognition-eU83LSM3xnk.en.srt|____Neuralnetworks[9.7]-Computervision-objectrecognition-eU83LSM3xnk.mp4|____Neuralnetworks[9.8]-Computervision-example-Gk8VvSL3IMk.en.srt|____Neuralnetworks[9.8]-Computervision-example-Gk8VvSL3IMk.mp4|____Neuralnetworks[9.9]-Computervision-datasetexpansion-Km1Q5VcSKAg.en.srt|____Neuralnetworks[9.9]-Computervision-datasetexpansion-Km1Q5VcSKAg.mp4|____Neuralnetworks[9.10]-Computervision-convolutionalRBM-y0SISi_T6s8.en.srt|____Neuralnetworks[9.10]-Computervision-convolutionalRBM-y0SISi_T6s8.mp4|____review.pdf|____Slides
链接地址:https://pan.baidu.com/s/1ShAewW54s9RTwZkVE0fWWQ 提取密码:yofe
评论列表 (0)